

PARAMETRIC DESIGN OF A SOLID DRYER FOR PROCESSING CASSAVA STARCH USING SIMPROSYS 2.0 PROCESS SIMULATION SOFTWARE

D. Abutu¹*, A. O. Ameh², S. M. Waziri²

¹Department of Chemical Sciences, Federal University Wukari, PMB 1020, Taraba State, Nigeria

²Department of Chemical Engineering, Ahmadu Bello University Zaria, Nigeria

*Corresponding author: davidabutu@fuwukari.edu.ng Received: December 04, 2016 Accepted: February 15, 2017

Abstract: Natural sun drying is one of the most common ways to preserve agricultural products. Many agricultural products are spread on the ground to be dried by sun and wind. This results to poor quality products due to contamination and high loss caused by uneven or incomplete dehydration. Parametric design of a drying system for processing cassava starch was carried out using Simprosys 2.0 Process simulation package specifically designed for drying systems. The units considered in this design includes; the air filter, blower, heater unit, solid dryer, input feeder, cyclone and product collector, a process flow diagram consisting of all the units was assembled. The drying system was designed on the basis of 20 kg/h of wet cassava starch with moisture content of 40%. From the results generated, the air particle loading for the air filter and filter area were found to be 0.038 kg/h and 0.267 m² respectively, the blower suitable for the drying operation has a total discharge pressure of 3.296 kPa and power output of 0.505 kW. The heating unit has a total heating duty of 11.447 kW. Also from the process simulation results, for all range of temperature between 90°C to 120°C, an air flow rate of 450 kg/h has the highest values of drying efficiencies averaging 83.2%. Considering a circular transverse section, the suggested dryer diameter and length are 0.296 m and 2.366 m, respectively. Therefore, a total of 11 minute with an optimum temperature of 120°C can reduce the moisture content of cassava starch from 40 % wet basis to equilibrium moisture content of 10 % wet basis suitable for storage.

Keywords: Design, moisture content, process simulation, simprosys, solid dryer

Introduction

Food dehydration is a traditional method for food preservation, removal of water from food material is usually accomplished by thermal evaporation, which is an energy intensive process, about two thousand five hundred (2500) joules of energy is required to evaporate one gram (1 g) of water. Diverse drying equipment and processes are used for the various food products. Food dehydration is a heat and mass transfer process that requires a significant amount of energy (Maroulis et al., 2003).

Nigeria is currently the largest producer of Cassava, amounting to about 34.8 million metric tons per annum, most of which is converted to starch (Maziya-Dixon, 2010). Production of starch in the country is currently at 20 million tonnes per annum and demand estimated at 230 million tonnes per annum (Maziya-Dixon, 2010). Though there are local producers of starch in country, but the demand for starch is far beyond production rate. One of the major unit operations in cassava starch processing is drying. Drying cassava starch locally by exposing the starch material to direct sunlight exposes it to atmospheric contaminant and Pest infestation, therefore the need to mechanize the process to encourage commercial production and reduce contamination caused by direct exposure to sunlight (Babalis et al., 2006).

Simprosys was used to carry out detailed design of the drying operation based on the physico-chemical properties of the wet cassava starch. Simprosys was developed by Simprotek Corporation, a Windows-based process simulator specifically designed for drying can simulate almost any drying and evaporation related processes. Parameters generated from simprosys simulation result will aid the fabrication of the solid dryer. With the availability of this drying device; there will be improved rate of drying leading to better product quality and the cost associated with the importation of a mechanical dryer abroad will be significantly reduced.

Material and Method List of materials Simprosys simulation software package (version 2.0) Computer system (2Gigabite Ram and 250HDD) Design model equations for drying processes

Over a small interval of time, ∂t , a certain amount of moisture evaporates from the cassava starch into the drying air, resulting in change in the humidity ratio. The moisture balance can be written as (Strumilo et al., 2007):

$$w_f = R(m_i - m_f) + w_{in}$$
(1)
Where;

W_f= exhaust humidity ratio of air kg water/kg dry air

 W_{in} = inlet humidity of air kg water/kg dry air

M_i= average moisture content at time t, in dry basis

 M_f = average moisture content at time t

R= Ratio of dry mass of cassava starch to dry air

The exhaust air temperature can be determined using the equation below (Strumilo et al., 2007):

$$T_p = \frac{C_a T_{in} + w_{in} (h_{fg} + C_v T_{in}) - w_i h_{fg} + R C_{pw} \theta_{in}}{C_a + w_f C_v + R C_{pw}}$$
(2)

Where:

 T_f = exhaust air temperature ^oC

 $T_{in} = inlet air temperature ^{o}C$

 Θ_{in} = inlet feed temperature

 C_a = specific heat of dry air kJ/kg°C

 C_v = specific heat of water vapour kJ/kg°C

 C_{fw} = specific heat of moist cassava starch kJ/kg°C

H_{fg}= latent heat of moisture evaporation J/kg

At inlet, the grain temperature is equal to the ambient air temperature (Strumillo et al., 2007)

Drying kinetics

The drying kinetics of starch could adequately be described by a zero order reaction

$$\frac{c(t)}{c_o} = kt \tag{3}$$

Where c(t) is the mass flow rate of dried starch (kg/h) at time t (s)

k is the rate constant (s^{-1}) and t is the drying time (s). The rate constant was related to the depth and drying temperature through the correlation (Sachin et al., 2011); k =

 $-30.34026 + 3.1920113 H_{hed} -$

$$0.109836H^2_{bed} \exp(\frac{-1518.626}{T})$$

17

(4)

Where H_{bed} = static bed depth (cm)

T (K) is the drying temperature

From the equation, drying rate can be increased by increasing the bed temperature or reducing the bed depth.

Determination of dryer cross-sectional area

In design mode, the required solids throughput F, and the inlet and outlet moisture content X_1 and X_0 are known, as is the ambient humidity Y_1 . If the inlet gas temperature T_{cl} is chosen, the outlet gas temperature T_{co} and humidity Y_0 can be found using constant enthalpy lines on psychometric chart, Cross sectional area of the dryer can be determined from the expression (Sachin *et al*, 2011):

$$A = \frac{G}{\rho_{cl}U_c} = \frac{F(X_l - X_0)}{\rho_{cl}U_c(Y_0 - Y_l)}$$
(5)

$$G = \rho_{cl}U_cA = \text{gas flow rate}$$

$$F = \text{particle throughput}$$

$$U_c = \text{gas velocity}$$

 $o_c = gas$ velocity $o_c = density of gas$

 ρ_{cl} = density of gas

Rate of water /moisture removal

The estimation of the amount of water to be removed from the solid material is obtained using the expression below (Mujumdar, 1995).

$$X = w \frac{(M_1 - M_2)}{(100 - M_2)} \tag{6}$$

Where;

 M_1 = initial weight before drying M_2 = final weight after drying. X= moisture evaporation rate W= weight of water removed.

The process flow sheet containing the air filter unit, the blower, the heating unit, the solid dryer and the cyclone was assembled as shown in Fig. 1.

Fig. 1: Process flow diagram for the drying operation

Input Parameters

The input variables were based on the assumption as stated below for the feed;

Feed type: Cassava Starch

Feed moisture content = 40 % wet basis

Feed temperature = 27° C.

Product temperature = $50^{\circ}C$

Product moisture content = 10 % Suitable for storage

Specific heat of the absolute cassava starch material = $1.26 \text{ kJ/kg}^{\circ}\text{C}$

Mass flow rate of cassava starch = 30 kg/h

Drying air was assumed to have the following laboratory conditions at the start of the experiment:

Initial pressure = 101.3 kPa

Initial temperature (dry-bulb) = $20 \,^{\circ}$ C

Initial absolute humidity = 0.009 kg/kg of air

Mass flow rate of air for solid material between (400 kg/h - 700 kg/h)

Drying air goes through an air filter first. Pressure drop in the air filter was assumed to be 0.3 kPa. Assuming a dust volume concentration in the air filter is 0.1 g/m^3 , collection efficiency of the air filter is 98.0% and filtration velocity is 2.5 m/s. Drying air then goes through a blower (the efficiency of the blower is 0.7) to gain 3 kPa static pressure, then through a heater to be heated to 120° C before going to the dryer. Pressure drop of air in heater is 0.8 kPa. Pressure drop of air in dryer is 1.2 kPa. The exhaust air entrains 0.1% of the total

material. The powdered feed then passes through a cyclone where entrained dust material will be collected. Collection efficiency of the cyclone is assumed to be 95%. The process flow diagram for the above situation is shown in figure 1; vvariables to be determined in this design includes the drying air velocity, the volumetric airflow rate of air and the drying temperature.

Results and Discussion

Simulation step for the fan

One of the design variable determined was the volumetric air flow rate of air necessary for the drying operation, reviewing Sokhansanj and Jayas (2007), the recommended mass flow rate of air necessary for safe drying of starch products ranges from 700 kg/hr to 400 kg/hr. To determine the range of air velocity, all process variables were set constant and the mass flow rate of air varied from 700 kg/h to 400 kg/h. The results for the air velocities are shown in Table 1.

In order to find the optimal mass flow rate of air for drying, and knowing that the air velocity (u_g) is directly related to air mass flow rate (W_{bw}) , process variables were set constant with W_{bw} varying from 400 to 700 kg/h and its influence compared to the air velocity values. To do this calculation, the software Simprosys 2.0 was used as shown in Fig. 2. This Figure shows how the software works. In this dialogue window, the software shows the required input process variables in a white background box, and the output values presented in the grey

FUW Trends in Science & Technology Journal, <u>www.ftstjournal.com</u> e-ISSN: 24085162; p-ISSN: 20485170; April, 2017: Vol. 2 No. 1A pp 17 – 22 18

Parametric Design of a Dryer, Using Simprosys 2.0 Software

colour box. The column Gas 1 represents the ambient air going in the fan, and the Gas 2 column shows the process variables of the air coming out from the fan. The result obtained from this variation of the air flow rate compared with air velocity is shown in Fig. 2, for an air flow between 400 to 700 kg/h, air velocity result is between 19.934 to 34.885 m/s, which are the recommended range to dry starch materials. Fig. 2 shows the parameters generated for the

blower, choosing a rectangular outlet cross section, the suggested air outlet diameter is 7.80 cm, and the air velocity is 22.426 m/s, while the power rating for the fan was evaluated as 0.505 kW. Fig. 3 also show the relationship between the air velocity and mass flow rate of air for the drying system.

Close Report Name: Fan				
Inlet/Outlet			Fan	
	Gas 2	Gas 3		
Mass Flow Rate Wet Basis (kg/h)	450.000	450.000	Static Pressure (kPa)	3.00
Mass Flow Rate Dry Basis (kg/h)	445.986	445.986	Total Discharge Pressure (kPa)	3.29
Volume Flow Rate (m3/h)	385.776	377.798	Efficiency	0.70
Pressure (kPa)	101.000	104.000	Power Input (kW)	0.50
Dry-bulb Temperature (°C)	27.000	29.524	✓ Include Outlet Velocity Effect	
Wet-bulb Temperature (°C)	17.816	18.967		
Dew Point Temperature (°C)	12.413	12.859	Outlet Cross Section Type	
Absolute Humidity (kg/kg)	0.009	0.009	Circle Crectangle	
Relative Humidity	0.404	0.359	Outlet Diameter (cm)	7.80
Specific Enthalpy (kJ/kg)	49.441	51.990	Outlet Velocity (m/s)	22.42
Humid Heat (kJ/kg.°C)	1.018	1.018		
Density (kg/m3)	1.166	1.191		

Fig. 2: Dialogue window for the blower showing input/output variables

60000

Table 1: Summary of simulation results at a fixed temperature of 90	C
Specific heat	1

Mass flowrate of air (kg/h)	Velocity of air (m/s)	Thermal efficiency (%)	Specific heat consumption (kJ/kg)	Moisture evaporation rate (kg/h)	Heater Heat Duty (kW)
400	19.934	111.70	2151.645	11.818	6.793
450	22.426	99.90	2420.60	11.818	7.643
500	24.918	90.30	2689.556	11.818	8.492
550	27.410	82.40	2958.511	11.818	9.341
600	29.901	75.80	3227.467	11.818	10.190
650	32.393	70.20	3496.422	11.818	11.039
700	34.885	65.30	3765.378	11.818	11.888

Fig. 3: Air flow rate versus gas velocity at the fan

Simulation step for the heater

The heating unit is meant to heat up the air flowing at 450 kg/hr from initial ambient temperature of 20° C to an optimal drying temperature of 120° C. Fig. 4 shows the dialogue window for the heater, the heating duty for the heater was evaluated as 11.447 kW.

Close Report				
lame: Heater				
Inlet/Outlet			Heater	
Inlet/Outlet	Gas 3	Gas 4	Heater	
Mass Flow Rate Wet Basis (kg/h)	450.000	450.000	Pressure Drop (kPa)	0.800
Mass Flow Rate Dry Basis (kg/h)	445.986	445.986	Heat Loss (kW)	0.000
Volume Flow Rate (m3/h)	377.798	494.534	Heating Duty (kW)	11.445
Pressure (kPa)	104.000	103.200		
Dry-bulb Temperature (°C)	29.524	120.000		
Wet-bulb Temperature (*C)	18.967	38.380		
Dew Point Temperature (*C)	12.859	12.741		
Absolute Humidity (kg/kg)	0.009	0.009		
Relative Humidity	0.359	0.007		
Specific Enthalpy (kJ/kg)	51.990	143.567		
Humid Heat (kJ/kg.°C)	1.018	1.025		
Density (kg/m3)	1.191	0.910		

Fig 4: Dialogue window showing Simulation results for the heater

Simulation Step for the Dryer

So far, the range of the design variables (air velocity, drying air temperature, and Air mass flow rate) has been found; however to determined their optimal values, it is necessary to observe their behaviour compared to a performance index, such as thermal efficiency.

To do this, a simulation of the process is run, in which process variables are set constant, then each of the design variables are varied and their influence on the thermal

Parametric Design of a Dryer, Using Simprosys 2.0 Software

efficiency for the dryer is observed. Fig. 5 shows the dialog window operating the dryer simulation software, the columns wet cassava starch and dry cassava starch show the values of the process variables for the cassava starch to be dried, before and after passing through the dryer, respectively. The columns named Gas 4 and Gas 5 are respectively for the heated air coming from the heater and the drying air exiting the dryer. Fig. 6 shows the performances indexes for the dryer (thermal efficiency, moisture evaporation rate, specific heat consumption) that are calculated by the software for the given conditions.

Tables 2, 3 and 4 show the variation of air temperature with thermal efficiency, heater heating duty and moisture evaporation rate. From Figs. 6 and 7, it can also be seen that the thermal efficiency decreases as the drying air temperature rises, from this behaviour, it can be deduced that the most suitable temperature for the drying process is in the range proposed and is dependent on the material temperature requirements for drying. To determine an exact value, practical experimentation is required.

Name: Solid Dryer		Calculation	Type: Balance	•			
Material Inlet/Outlet			Gas Inlet/Outlet			Dryer	
	Wet Cassava S	Dry Cassava Sti		Gas 4	Gas 5		
Mass Flow Rate Wet Basis (kg/h)	30.000	18.164	Mass Flow Rate Wet Basis (kg/h)	450.000	461.818	Gas Pressure Drop (kPa)	1.20
Mass Flow Rate Dry Basis (kg/h)	18.000	17.982	Mass Flow Rate Dry Basis (kg/h)	445.986	445.986	Heat Loss (kW)	0.00
Volume Flow Rate (m3/h)			Volume Flow Rate (m3/h) 494.534		434.155	Heat Input (kW)	0.00
Pressure (kPa)			Pressure (kPa)	103.200	102.000	Work Input (kW)	0.00
Temperature (°C)	27.000	55.000	Dry-bulb Temperature (°C)	120.000	54.242	Heat Loss by Transport Device (kW)	0.00
Vapor Fraction			Wet-bulb Temperature (°C)	38.380	37.826	Moisture Evaporation Rate (kg/h)	11.81
Moisture Content Wet Basis (kg/kg)	0.400	0.010	Dew Point Temperature (°C)	12.741	34.621	Initial Gas Temperature (°C)	27.00
Moisture Content Dry Basis (kg/kg)	0.667	0.010	Absolute Humidity (kg/kg)	0.009	0.035	Specific Heat Consumption (kJ/kg)	3573.26
Mass Concentration (kg/kg)			Relative Humidity	0.007	0.363	Thermal Efficiency	0.692
Specific Enthalpy (kJ/kg)	65.698	70.909	Specific Enthalpy (kJ/kg)	143.567	141.524	Dust Entrained in Gas/Material Total	0.00
Specific Heat (kJ/kg.°C)	2.429	1.289	Humid Heat (kJ/kg.°C)	1.025	1.069	Gas Outlet Dust Loading (g/m3)	0.03
Specific Heat Dry Basis (kJ/kg.°C)	4.049	1.302	Density (kg/m3)	0.910	1.064		
Density (kg/m3)							

Fig. 5: Dialogue window showing simulation results for the dryer

Table 2: Summar	v of simulation	results at a fixed	l temperature of 100°C

Mass flowrate of air (kg/h)	Velocity of air (m/s)	Thermal efficiency (%)	Specific heat consumption (kJ/kg)	Moisture evaporation rate (kg/h)	Heater Heat Duty (kW)		
400	19.934	97.10	2493.175	11.818	7.920		
450	22.426	86.80	2804.822	11.818	8.909		
500	24.918	78.50	3116.459	11.818	9.899		
550	27.410	71.70	3428.116	11.818	10.889		
600	29.901	65.90	3739.763	11.818	11.879		
650	32.393	61.00	4051.410	11.818	12.869		
700	34.885	56.80	4363.057	11.818	13.859		

Table 3: Summary of simulation results at a fixed temperature of 110°C

Mass flowrate of air (kg/h)	Velocity of air (m/s)	Thermal efficiency (%)	Specific heat consumption (kJ/kg)	Moisture evaporation rate (kg/h)	Heater Heat Duty (kW)
400	19.934	86.00	2834.706	11.818	9.047
450	22.426	76.90	3189.045	11.818	10.178
500	24.918	69.60	3543.383	11.818	11.308
550	27.410	63.50	3897.721	11.818	12.439
600	29.901	58.40	4252.059	11.818	13.570
650	32.393	54.00	4606.398	11.818	14.701
700	34.885	50.30	4960.736	11.818	15.832

Table 4: Summary of simulation results at a fixed temperature of 120°C

Mass flowrate of air (kg/h)	Velocity of air (m/s)	Thermal efficiency (%)	Specific heat consumption (kJ/kg)	Moisture evaporation rate (kg/h)	Heater Heat Duty (kW)
400	19.934	77.30	3176.237	11.818	10.175
450	22.426	69.20	3573.267	11.818	11.447
500	24.918	62.50	3970.296	11.818	12.719
550	27.410	57.10	4367.326	11.818	13.991
600	29.901	52.50	4764.356	11.818	15.263
650	32.393	48.60	4888.385	11.818	16.535
700	34.885	45.20	5558.415	11.818	17.807

Fig. 6: Thermal efficiency versus Drying Air temperature at different air flow rate

Fig. 7: Thermal efficiency versus Air mass flow rate at different temperature

Another performance index of the dryer that can be useful to analyse the dryer behaviour is the heat consumption, as Fig. 8 illustrates the specific heat consumption in the dryer increases as air flow rate is higher, this shows that for these drying conditions, increasing air flow means that more heat is used to evaporate each kilogram of water in the material, thus thermal efficiency of the dryer decreases. The moisture evaporation rate is the amount of moisture that is necessary to evaporate in one hour to reach desired final humidity in the product, thus it is only affected by the mass of fruit placed in the dryer, and the initial and final levels of humidity that is seek to be reached, this means that a variation in air flow rate, or the drying air temperature does not affect the moisture evaporation rate.

Fig. 8: Specific heat consumption versus drying air temperature at different air flow rate

Fig. 9: Dialogue window for dryer scooping model, showing dimensions

Once the drying air velocity has been determined, it is possible to calculate the drying chamber dimensions using the Simprosys 2.0 software, these tool allows selection of the cross section type of the dryer chamber and determination of its dimensions, considering a circular transverse section, the dryer chamber diameter and length are 0.296 and 2.366 m, respectively as shown in Fig. 9.

Conclusion

The following conclusions were deduced after the design: A solid dryer for processing cassava starch was successfully designed using Simprosys 2.0 simulation software package using basic physico-chemical properties of cassava starch. The quantity of heat required to heat air flowing at 450 kg/hr from initial ambient temperature of 20° C to drying temperature of 120° C is 11.447 kW, The length and diameter of the dryer were evaluated as 2.366 m and 0.296 m, respectively. The dryer was able to dry cassava starch from an initial moisture content of 40% to a moisture content of 10% suitable for storage.

Acknowledgement

The authors wish to acknowledge the management of Simproteck Corporation for releasing one month free licence of the software Simprosys to enable us carryout the design.

References

Babalis SJ, Papanicolaou E, Kyriakis N, Belessiotis VG 2006. Evaluation of thin-layer drying models for describing

21

Parametric Design of a Dryer, Using Simprosys 2.0 Software

drying kinetics of figs (Ficuscarica). J. Food Engr., 75: 205–214.

- Maziya-Dixon A 2010. Draft report on the action plan for a cassava transformation in Nigeria. *Paper presented at the Annual Conference on Agricultural Development in Nigeria*, pp. 8-9.
- Mujumdar AS 1995. Handbook of Industrial Drying, Vol. 1 2nd Edn, *Marcel Dekker*, New York, p. 285.
- Mujumdar AS, 2007. Drying of foods and Vegetables, Vol.1 1st Edn, *Taylor & Francis*, Boca Raton, pp. 89-120.
- Maroulis Z & Saravacos G 2003. Food Process Design, Vol. 1 1st Edn, *Marcel Dekker*, New York, p. 44.
- Sachin, VJ, Chung LL & Mujumdar AS 2011. Drying of foods, vegetables and fruits. Vol. 2 1st Edn, *McGraw Hill*, pp. 88-90.
- Sokhansanj S & Jayas D 2007. Drying of foodstuffs, Vol. 1, 2nd Edn, *Taylor & Francis*, Boca Raton pp 97-110.
- Strumillo C, Jones PL & Zylla R 2007. Energy aspects in drying, in Handbook of Industrial Drying. Mujumdar AS, Taylor & Francis; Boca Raton, p. 38.
- Simprosys 2.0 process simulation software package Retrieved on 10 January, 2015 from <u>www.simproteck.com</u>.